Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3665, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402727

RESUMO

Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.


Assuntos
Plásticos , Resíduos , Animais , Plásticos/toxicidade , Resíduos/análise , Monitoramento Ambiental , Oceanos e Mares , Aves , Oceano Índico
2.
PLoS One ; 12(8): e0182734, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832641

RESUMO

Recent studies have documented that little penguins (Eudyptula minor) associate at sea, displaying synchronised diving behaviour throughout a foraging trip. However, previous observations were limited to a single foraging trip where only a small number of individuals were simultaneously tracked. Consequently, it is not known whether coordinated behaviour is consistent over time, or what factors influence it. In the present study, breeding adults were concurrently instrumented with GPS and dive behaviour data loggers for at least 2 consecutive foraging trips during guard and post-guard stage at two breeding colonies (London Bridge and Gabo Island, south-eastern Australia) of contrasting population size (approximately 100 and 30,000-40,000, respectively). At both colonies, individuals were sampled in areas of comparable nesting density and spatial area. At London Bridge, where individuals use a short (23 m) common pathway from their nests to the shoreline, > 90% (n = 42) of birds displayed foraging associations and 53-60% (n = 20) maintained temporally consistent associations with the same conspecifics. Neither intrinsic (sex, size or body condition) nor extrinsic (nest proximity) factors were found to influence foraging associations. However, individuals that departed from the colony at a similar time were more likely to associate during a foraging trip. At Gabo Island, where individuals use a longer (116 m) pathway with numerous tributaries to reach the shoreline, few individuals (< 31%; n = 13) from neighbouring nests associated at sea and only 1% (n = 1) maintained associations over subsequent trips. However, data from animal-borne video cameras indicated individuals at this colony displayed foraging associations of similar group size to those at London Bridge. This study reveals that group foraging behaviour occurs at multiple colonies and the pathways these individuals traverse with conspecifics may facilitate opportunistic group formation and resulting in foraging associations irrespective of nesting proximity and other factors.


Assuntos
Comportamento Alimentar , Spheniscidae/fisiologia , Animais
3.
PLoS One ; 10(10): e0139351, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26439491

RESUMO

Determining the foraging behaviour of free-ranging marine animals is fundamental for assessing their habitat use and how they may respond to changes in the environment. However, despite recent advances in bio-logging technology, collecting information on both at-sea movement patterns and activity budgets still remains difficult in small pelagic seabird species due to the constraints of instrument size. The short-tailed shearwater, the most abundant seabird species in Australia (ca 23 million individuals), is a highly pelagic procellariiform. Despite its ecological importance to the region, almost nothing is known about its at-sea behaviour, in particular, its foraging activity. Using a combination of GPS and tri-axial accelerometer data-loggers, the fine scale three-dimensional foraging behaviour of 10 breeding individuals from two colonies was investigated. Five at-sea behaviours were identified: (1) resting on water, (2) flapping flight, (3) gliding flight, (4) foraging (i.e., surface foraging and diving events), and (5) taking-off. There were substantial intra- and inter- individual variations in activity patterns, with individuals spending on average 45.8% (range: 17.1-70.0%) of time at sea resting on water and 18.2% (range: 2.3-49.6%) foraging. Individuals made 76.4 ± 65.3 dives (range: 8-237) per foraging trip (mean duration 9.0 ± 1.9 s), with dives also recorded during night-time. With the continued miniaturisation of recording devices, the use of combined data-loggers could provide us with further insights into the foraging behaviour of small procellariiforms, helping to better understand interactions with their prey.


Assuntos
Comportamento Apetitivo/fisiologia , Aves/fisiologia , Comportamento Alimentar/fisiologia , Voo Animal/fisiologia , Acelerometria , Animais , Austrália , Ecossistema , Sistemas de Informação Geográfica , Telemetria
4.
Biol Open ; 4(10): 1298-305, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26369928

RESUMO

During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area.

5.
Mov Ecol ; 3(1): 16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236479

RESUMO

BACKGROUND: Establishing patterns of movements of free-ranging animals in marine ecosystems is crucial for a better understanding of their feeding ecology, life history traits and conservation. As central place foragers, the habitat use of nesting seabirds is heavily influenced by the resources available within their foraging range. We tested the prediction that during years with lower resource availability, short-tailed shearwaters (Puffinus tenuirostris) provisioning chicks should increase their foraging effort, by extending their foraging range and/or duration, both when foraging in neritic (short trips) and distant oceanic waters (long trips). Using both GPS and geolocation data-loggers, at-sea movements and habitat use were investigated over three breeding seasons (2012-14) at two colonies in southeastern Australia. RESULTS: Most individuals performed daily short foraging trips over the study period and inter-annual variations observed in foraging parameters where mainly due to few individuals from Griffith Island, performing 2-day trips in 2014. When performing long foraging trips, this study showed that individuals from both colonies exploited similar zones in the Southern Ocean. The results of this study suggest that individuals could increase their foraging range while exploiting distant feeding zones, which could indicate that short-tailed shearwaters forage in Antarctic waters not only to maintain their body condition but may also do so to buffer against local environmental stochasticity. Lower breeding performances were associated with longer foraging trips to distant oceanic waters in 2013 and 2014 indicating they could mediate reductions in food availability around the breeding colonies by extending their foraging range in the Southern Ocean. CONCLUSIONS: This study highlights the importance of foraging flexibility as a fundamental aspect of life history in coastal/pelagic marine central place foragers living in highly variable environments and how these foraging strategies are use to buffer this variability.

6.
PLoS One ; 9(8): e105065, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119718

RESUMO

Prey distribution, patch size, and the presence of conspecifics are important factors influencing a predator's feeding tactics, including the decision to feed individually or socially. Little is known about group behaviour in seabirds as they spend most of their lives in the marine environment where it is difficult to observe their foraging activities. In this study, we report on at-sea foraging associations of little penguins (Eudyptula minor) during the breeding season. Individuals could be categorised as (1) not associating; (2) associating when departing from and/or returning to the colony; or (3) at sea when travelling, diving or performing synchronised dives. Out of 84 separate foraging tracks, 58 (69.0%) involved associations with conspecifics. Furthermore, in a total of 39 (46.4%), individuals were found to dive during association and in 32 (38.1%), individuals were found to exhibit synchronous diving. These behaviours suggest little penguins forage in groups, could synchronise their underwater movements and potentially cooperate to concentrate their small schooling prey.


Assuntos
Comportamento Alimentar , Spheniscidae/fisiologia , Animais , Cruzamento , Feminino , Masculino , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...